Dependence of the Impact Response of Polyvinylidene Fluoride Sensors on Their Supporting Materials' Elasticity

نویسندگان

  • Yunfang Jia
  • Xinjuan Chen
  • Qingshan Ni
  • Longhua Li
  • Cheng Ju
چکیده

Polyvinylidene fluoride (PVDF) is popular sensing material because of its unique piezoelectric characteristics. In this work an impact sensor was prepared from a sandwiched structure PVDF film, and the related detection circuits were presented. The dependence of the PVDF sensors' response on the elasticity of the supporting materials was examined and discussed. Here two response indexes were discussed, which were the peak-to-peak voltage (Vpp) and the recovery time. Firstly, falling impact experiments were executed on desk-supported PVDF sensors (100 mm PVDF film) using free falls of different weights from different heights. Then the same shock experiments were repeated on the same sensor, but changing the backstops to a sponge and rubber, respectively. On the desk, the values of Vpp were bigger than when the other two backstops were used; but the changes of the impact energy could not be reflected by the PVDF sensor when it was supported by a hard material. It was found that the biggest sensitivity of the voltage response (about 96.62 V/J) was obtained by the sponge-supported sensor; for the same sensor, when it was supported by rubber, the slope was 82.26 V/J. Moreover, the recovery time for the desk-supported sensor was almost constant, varying from 0.15 to 0.18 s, while for the same sensor supported by sponge or rubber, its recovery time changed with the shifting of the impact energy in the range of 0.02~0.36 s, but no pattern could be found in the recovery-time characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials.

Electroactive materials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidene fluoride), PVDF, have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibr...

متن کامل

Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading

Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental "stress-averaging" mechanis...

متن کامل

Effect of Collagen Gel on Sciatic Nerve Regeneration in the Polyvinylidene Fluoride Tube

Background: The limited availability of donor sites for nerve grafting has continued to stimulate research toward finding suitable alternatives for autograft. The aim of this research was to study the effect of piezoelectric channel and collagen gel on nerve regeneration. Materials and methods: This research is an experimental study. Forty eight male rats (200-250 gr) were used. After axotomy...

متن کامل

Ab initio studies of polarization and piezoelectricity in vinylidene fluoride and BN-based polymers.

Highly piezoelectric and pyroelectric phases of boron-nitrogen-based polymers have been designed from first principles. They offer excellent electrical and structural properties, with up to 100% improvement in the piezoelectic response and an enhanced thermal stability with respect to polyvinylidene fluoride (PVDF). Since methods for their synthesis are readily available, these polymers are ext...

متن کامل

Optimal placement of piezoelectric actuators and polyvinylidene fluoride error sensors in active structural acoustic control approaches

Optimization of the location of a rectangular piezoelectric a tuator and both the size and location of a rectangular surface strain error sensor constructed from polyvinylidene fluoride (PVDF) for active structural acoustic ontrol (ASAC) is studied in this work. An algorithm is proposed for choosing the optimal actuator/sensor configuration for controlling sound from a baffled simply supported ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013